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1. Abstract 
 
In automotive engineering, vehicle wading refers to a situation where vehicle 
traverses through water at different speeds. Vehicle water wading is a 
standard test procedure for JLR vehicles. Test procedure consists of set of 
combinations with different depths of water level and entry speeds in to the 
wading trough. The different failure checks are the key indicators for the 
physical test scenario. 
 
Lack of CAE capability for the wading test resulted in late detection of failure 
modes with unknown reasons, leading to expensive design changes 
potentially affecting the vehicle program timing. The need to find these 
reasons affecting the failure mode motivated JLR to develop a CAE method. 
JLR has developed a state of the art method which is patented to simulate the 
physical test procedure virtually using CFD tool, STAR-CCM+. The current 
method is employed effectively to design and analyses the under floor and 
engine bay components. 
 
Existing method has also got some limitations. One of the major limitation is 
computing the inertial field of the vehicle while wading. To address this 
limitation of the hydrodynamic forces due to the inertial field. A new method of 
co-simulating CFD and MBD is being employed. JLR and Fraunhofer Institute 
SCAI together have developed this method employing co-simulation engine 
developed by Fraunhofer named MpCCI (Multi-Physics Code Coupling 
Interface). This co-simulation communicates the MBD calculated 
instantaneous positions and velocity to the CFD model. The flow field is 
resolved calculating the effective fluid forces and torques. These forces and 
torques are feed back into MBD model. This two way communication is 
enabled with MpCCI. 
 
Keywords: Computational Fluid Dynamics - Multiphase and phase change, 
Multi-Body Simulation - MBS, FE, and the co-simulation of both, Multi-physics 
- Coupled Simulations, Multiphysics - Fluid-Structure Interaction, Multi-physics 
- Multi-physics, Multi-scale, Multi-fidelity Modeling 
 
 
 
 
 
 
 



2. Introduction 
 
Vehicle wading at different depths of water and at different vehicle speeds is 
an important test procedure for a vehicle development program at Jaguar 
Land Rover (JLR). The test procedure looks at functional integrity of various 
components in the vehicle such as bumper, engine undertray, and 
transmission scoop, radiator, plastic sills etc. when traversing through water. 
Virtual method developed by JLR to simulate the physical test scenario is 
based on CFD code. In CFD code the motion was modelled with a rigid body 
motion. The CFD code was calculating the pressure field with only CFD rigid 
body motion. The pressure field captured was not considering the inertial field 
of the vehicle. In real life conditions when the vehicle is wading the inertial 
field play’s prominent role. As the vehicle positions change in vertical direction 
and the vehicle decelerates. These two conditions change the entire pressure 
field on the floor of the vehicle. 
 
Few limitations in the current CFD modelling 
 
Splash modeling; 
 
Splashing of water which is a complex behavior to model and it is observed 
during high speed wading, we are currently exploring new ways to model 
splash during our simulation to bring it closer to reality. 
 
Hydrodynamic force; 
 
Hydrodynamic inertial field of force is generated due to the rotation of wheels 
and the impact of the vehicle floor on water surface. As of now this effect is 
not considered in standalone CFD simulation. 
 
Vehicle suspension behaviour; 
 
When the vehicle is traversing through water at different depths and speeds 
due to force acting on the vehicle components, it is understood that there is 
definite movement in suspension components affecting the traction of the 
vehicle. Ride height of a mid-sized SUV driven through the wading trough 
profile for 8 [km/h] is as shown in Figure 1, this illustrates that dynamic 
behaviour of the suspension is an important factor which needs to be 
considered during virtual simulation of wading. 
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In SIMPACK a predictor-corrector-approach is implemented for the stiff-
solvers to evaluate the equation of motion. This algorithm makes usage of 
partial derivatives for solving nonlinear equations, which arise during 
numerical time integration. In the considered example this would be 
derivatives of force with respect to velocity. The solver has to calculate the 
Jacobian matrix. This is done with the finite difference scheme. As 
consequence, there are variations of local state at single time point, which 
have to be considered. In the case of coupled MBS-CFD simulation this 
means evaluation of the CFD-model for a new state. This is rather expensive. 
In our example this means simulation of the STAR-CCM+ model with new 
kinematic constraints. This is also technically sophisticated. One has to use 
the restart capabilities of STAR-CCM+. The other approach is to introduce an 
approximation for exchanged quantities. Those then can be used to 
interpolate received values for internal state changes due to iteration at single 
time point. 
 
Currently the semi-implicit approach is used only for SIMPACK because of 
extended interface capabilities. MpCCI SIMPACK adapter saves the solution 
history of the co-simulation and calculates an approximation of the behavior of 
the exchanged quantities. This approximation can be then used for the 
iterative solving process in SIMPACK. Semi-implicit approach improves 
stability of the co-simulation, especially on the SIMPACK side, as it provides 
updated information about the force values in each iteration of the solver. 
 
 

4. Current Approach 
 
To validate the theoretical understanding of co-simulation, we simplified the 
model in Simpack and Star-CCM+.  In MBS domain model chosen is a simple 
block with four wheels, with suspension i.e. springs directly connected to the 
block driven over standard wading trough profile as depicted in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In CFD domain model chosen is a simple box traversing through the trough 
with water as depicted in Figure 4. Schematic diagram with physical quantities 
that are being exchanged between Simpack and Star-CCM+ via MpCCI is 
depicted in Figure 5 

Figure 3 Simplified block travelling through wade trough in 
Simpack 
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impact of the errors of the subsystems on the results. Therefore we intend to 
get a smoother reaction from STAR-CCM+ by using a model with smoothened 
edges. It is observed that the effect of CFD solution on co-simulation is larger 
than MBS< especially in the first phase of wading, we are working on 
improving the STARCCM+ model. 
 
Another approach is to increase the numerical stability of the co-simulation. 
E.g. the impact of the communication time steps, exchanged quantities or 
solver used in by the clients. Here a robust method, with little impact from the 
iterative process on the convergence of the solution, would be preferred. 
 
Central idea is to overcome the initial obstacles as described above and to 
validate the method for a simple block, then carry forward this method to afull 
vehicle model and demonstrate the capability of co-simulation.  We intend to 
discuss results from on-going investigations during the conference. 
 
Central idea is to validate the method for a simple block and apply this 
method to a full vehicle model and demonstrate the capability of co-
simulation.  We intend to discuss results from on-going investigations during 
the conference. 
 

6. Conclusion 

Load cases like vehicles wading through deep water have lead to a new 
approach with a coupled simulation setup. Whilst all the detailed effects of 
water waves and splashes can be simulated in a standard CFD code the 
jumping behaviour of the car due to hydrodynamic forces and vehicles 
reaction when diving into water trough is calculated in a MBS code.  

In this paper an approach for the vehicle wading simulation, based on 
coupling of multiple codes, is presented. Due to the complex physics of the 
simulation process several effects have to be considered in detail. For this 
reason, different codes for the simulation process will be used in a coupled 
approach. The focus of this paper will be on the technical issues to realise 
such a new type of co-simulation. This application is a kind of fluid-structure-
interaction where the structural analysis has been replaced by a simpler but 
faster elastic MBS. The MpCCI coupling environment provides some schemes 
to calculate the integrated forces from the wet CFD surface regions and map 
them on single bodies in MBS. Multiple coupling regions can be used to 
calculate the different loads onto under-hood parts, wheels, etc.  
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