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1 Introduction 

Fluid-structure interactions have applications in many engineering fields. Usually, the problem is 
partitioned into a fluid and a structure sub problem. Constraints on the common interface ensure the 
interaction between both sub problems, which are then solved separately. 

The simplest method, for coupling the fluid and structure problem, is explicit coupling, which needs 
only one solution to each sub problem at each time step. For incompressible flows, this method is not 
viable, because of the added-mass effect [1]. The coupling becomes unstable for density ratios éæ�éÙ 
close to s and stability cannot be achieved with smaller time steps. 

This problem is inherent to explicit coupling methods, since the interface constraints are not satisfied. 
To eliminate the added-mass effect, the sub problems are coupled implicitly. Section two describes 
implicit coupling using quasi-Newton methods. In section three examines numerically the behavior of 
the quasi-Newton methods and section four gives a conclusion. 

 

2 Implicit Coupling with Quasi-Newton Methods 

Enforcing the interface constraints at time step Pá>5 leads to the fixed point problem â:T; L Tá where â 
depends on the coupling scheme. For example, a sequentially staggered scheme results in â L í Ü à, 
where í and à are the solution operators to the structure and fluid problem, respectively. Currently, the 
coupling software MpCCI solves this fixed point equation with constant relaxation or Aitken acceleration.  

Now a family of quasi-Newton methods is introduced. Therefore, the problem is written as a root 
finding problem 4:T; L �â:T; F T. The generalized Broyden method [2] approximates the inverse 

Jacobian at iterate TÞ by ,Þ N �4:TÞ;
?5. The approximation ,Þ is the unique minimizer of +�,Þ F ,Þ?à�+¿

6
 

under the constraint of I secant equations ,Þ8 L 9. The difference matrices are defined by 
8 L >4:TÞ;F 4:TÞ?à;á å á4:TÞ;F 4:TÞ?5;? and 9 L >TÞ F TÞ?àá å á TÞ F TÞ?5?.  

The inverse residuum 4è:U; L U Fâ?5:U; has the same root as 4:T; and thus can be seen as an 
alternative to 4:T;. The approximate Jacobian ,�Þ N �4è:TÞ;?5 is defined in the same manner as ,Þ. 
Special care must be taken, when computing the next iterate. Since â?5 is not available, the inverse 
residuum cannot be evaluated directly. Instead, with the new iterate UÞ>5 L �â:TÞ>5;, where TÞ>5 L UÞ F
,�Þ4è:UÞ; is an intermediate update, the inverse residuum is simply 4è:UÞ>5; L 4:TÞ>5;. This approach is 
called inverse generalized Broyden method. Both algorithms are summarized in the following. 

 
Generalized Broyden Method Inverse Generalized Broyden Method 
Input:  âá T4á ,4áI Input:  âá T4á ,�4áI 
Output: TÛá ,Û Output: TÛá ,�Û 
for G L rá sá å until converged for G L rá sá å until converged 

 UÞ Lâ:TÞ;  UÞ Lâ:TÞ; 
 4Þ L UÞ F TÞ  4Þ L UÞ F TÞ 
 8 L >�4Þ?àá å á�4Þ?5?  8 L >�4Þ?àá å á�4Þ?5? 
 9 L >�TÞ?àá å á�TÞ?5?  9é L >�UÞ?àá å á�UÞ?5? 
 
= L ������	Ð9Z���> E �i�� 

 
= L ������	Ð9Z���> E �i�� 

 TÞ>5 L TÞ F ,Þ?à4Þ F :9 F ,Þ?à8;Ù  TÞ>5 L UÞ F � ,�Þ?à4Þ F k9é F ,�Þ?à8oÙ 
 ,Þ>5 L ,Þ?à E :9 F ,Þ?à8;:8C8;?58C  ,�Þ>5 L ,�Þ?à E k9é F ,�Þ?à8o:8C8;?58C 

 
Cases of special interest are I L s and I L ». The choice I L s results in the widely known 

Broyden method, which minimizes !,Þ>5 F ,Þ!¿6 . In the other interesting case I L », the generalized 
Broyden method equals the Anderson mixing, if the initial matrix is chosen as ,4 L FÚ�. Since the new 
approximation ,Þ>5 is only needed if G P I, the Anderson mixing never computes ,Þ>5. 
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The fixed point problem â:T; L T is part of a time stepping method. Therefore, it is reasonable to 
reuse information from the previous time step. This is achieved by setting ,4 L ,Û

á, where ,Û
á is the 

converged approximation of the Jacobian for the time step Pá. Therefore, the matrix ,Û
á must be computed 

explicitly either at the end of the current time step or at the beginning. The corresponding inverse 
generalized Broyden method is known as the multi-vector update quasi-Newton (MVQN) method, 
introduced in [3]. 

For the inverse generalized Broyden method, the choice I L » and ,4 L r  is possible, after the first 
iteration. This is the least square quasi-Newton method, developed by Haelterman and Degroote [4]. 
The related generalized Broyden PHWKRG� DQG� WKH� LQYHUVH�HTXLYDOHQW� RI�%UR\GHQ¶s method are both 
unstable, since they create linear dependent iterates. 

The methods are characterized by the number secant equation, the initial matrix guess and the type 
of fixed point problem. The quasi-Newton method considered here are the following: 

  

 GB:,Þ; GB:FÚ�; I-GB:FÚ�; GB:,Û
á; I-GB:,Û

á; I-GB:r; 

I s » » » » » 
,4 ,Û

á FÚ� FÚ� ,Û
á ,Û

á r 
â â â â

?5 â â
?5 â

?5 
 
Only the Broyden method GB:,Þ; requires to update the approximation in each quasi-Newton 

iteration. The Anderson variants with ,4 Ð <FÚ+á r= do not construct the matrices ,Þ explicitly, since the 
matrix vector multiplication is done using only the difference matrices 8á9. Additionally, the methods 
GB:,Û

á; and I-GB:,Û
á; must compute the approximate Jacobian from the previous time step in the first 

iteration associated with a new time step. 
 

3 Numerical Investigation 

In the following numerical examples, the commercial software packages ABAQUS and FLUENT are 
employed to solve the structure and fluid sub problem respectively. The coupling of the two solvers is 
done by the software MpCCI. For the following examples, implicit coupling with the staggered sequential 
scheme â L à Ü í has been applied. 

The first example is a driven cavity model with flexible bottom, see figure 2. The fluid density is set 
to éÙ L s����7, while the structural density ranges from éæ L twá å átwr����7ä In [1] the authors show 
that explicit coupling diverges for structural densities lower than uts����7. The implicit coupling with 
quasi-Newton methods results in a stable solution for structural densities ranging down to tw����7. 
Figure 1 depicts the mean number of iterations for each method to achieve a relative residual less than 
sr

?;.  
The first interesting observation is that the lower structural density still has negatives effects on the 

simulation. All methods require a greater number of iterations to converge for lower structural 
densities. This coincides with the results of [5], where the authors show the influence of the structural 
density on the convergence of constant relaxation to solve the fixed point problem. The negligible 
influence of the time step size on the convergence will be shown in the presentation. 

Fig. 1  

Mean number of iterations to achieve 
!ËÖ!

!ëÖ!>!ìÖ!
O sr

?;with different structural densities. 
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Secondly, all quasi-Newton methods converge faster than the Aitken acceleration, for the lowest 
density ratio, they need at worst halve the amount of iterations required by the Aitken method. Of 
these quasi-Newton method, the inverse methods outperform their standard generalized Broyden 
variants. 

 Furthermore, the best performance has the inverse Anderson mixing type with initial guess matrix 
from the previous time step. In contrast, the I-GB:FÚ�; method, which is equivalent, except it discards 
all information from the time steps before, needs around two more iterations to converge. This 
indicates that information, from the previous time steps, has a significant influence on the 
convergence.  

The second example is the benchmark proposed by Turek et al. [6], see figure 3. Both the fluid and 
structure density equal é L srrr����7, implying strong influences from the added-mass effect.  
Explicit coupling with a time step size of �P L rärrs� diverges after less than ten time steps. The 
implicit coupling variant results in a stable simulation over the interval >rásr�?, for all quasi-Newton 
methods.  

The following table shows the mean number of quasi-Newton iterations required until convergence 
with a relative residuum of less than sr?;. The Aitken acceleration is again used as reference. 
Additionally, the maximal computational time for one quasi-Newton iteration and the total time spend 
on quasi-Newton iterations are displayed, without the evaluation of â. 

 
 
 
 
 
 
 
 
 
 
 
Once again, this table show that the quasi-Newton are superior to the currently implemented Aitken 

acceleration. Furthermore, the inverse methods converge faster than their counterparts. This indicates 
that the inverse generalized Broyden method is better suited to solve fluid-structure interactions. The I-
GB:,Û

á; method outperforms all other methods, similar to the first example. In contrast to the driven 
cavity example, the usual Broyden method has the second lowest mean number of iterations. The 
lower number of iterations result from the higher number of time steps for this example, because 
%UR\GHQ¶V�PHWKRG�EHQHILWV�for more time steps from the reuse of information.  

The maximal computational effort for one quasi-Newton iteration is the lowest for the Anderson 
methods without information from earlier time steps, since they do not rely on dense square matrices. 
These methods only rely on the solution to the least square problem !8Ú E 4Þ!�and multiplication with 
the matrices 8 and 9, where both have a low number of columns. Reusing previous approximation 
requires the dense and square formulation of ,Û

á and thus they take at least twice the computational 
effort.  

The extremely high computational cost of the GB:,Û
á; and I-GB:,Û

á; variant stems from the overuse 
of information from earlier time steps. Then, the resulting initial guess ,Û

á does not lead to a suitable 
approximation of the Jacobian in the current time step. Instead, the methods are restarted with ,4 L
�FÚ�. At first, this slows down the convergence, but after a few time steps the previous convergence 
rate is attained. It becomes evident from the overall computational effort that these restarts happen 
rarely.  

 

4 Conclusions 

This paper introduced the inverse generalized Broyden method for the solution of fixed point problems. 
For a selection of quasi-Newton, the influence of the added-mass effect was considered. Besides, their 
performance was compared to the Aitken acceleration, currently implemented in MpCCI.  
Across the board, all tested quasi-Newton methods outperformed the Aitken acceleration by a factor of 
t to v for density ratios close to one. Furthermore, the inverse generalized Broyden methods converged 
faster than their respective generalized Broyden counterparts, making them favorable for the simulation 
of fluid-structure interaction. Although all implicit coupling simulations were stable for all density ratios, 
remnants of the added-mass effect were visible through the slower convergence with decreasing density 
ratio. 
 

 

Method Î Iterations I=T ÂP Ñ�ÂP 

Aitken 24,98 - - 

GB:,Þ;  8,77  1.59 ms   53.48 s 

GB:,Û
á;  11,48  1697.08 ms   61.17 s 

GB:FÚ+;  14,71  0.77 ms    26.99 s 

I-GB:FÚ+;  10,63  0.57 ms   21.49 s 

I-GB:,Û
á;  6,63  356.03 ms   24.86 s 

I-GB:r;  9,86  0.41 ms   17.67 s 
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